Advertisement

The universe might be acting weird. Cosmic 'lenses' may help reveal why

The universe might be acting weird. Cosmic 'lenses' may help reveal why A new method for measuring how fast the universe is flying apart could help astronomers wrestling with a possible crisis in cosmology.

FROM THE MOMENT it burst into existence more than 13 billion years ago, the universe has been expanding, with galaxies visibly flying apart from each other. To make sense of the physical laws governing the cosmos, astronomers have tried to measure one of the most important numbers in cosmology, the Hubble constant, which describes how quickly this expansion is happening and the universe’s age in turn.

But recently, multiple efforts to find a value for the Hubble constant have turned up a potential crisis in cosmology: the universe seems to be flying apart faster than expected. If confirmed, this baffling change would force astrophysicists to rethink the fundamentals of our universe, which currently don’t provide for such a change even after accounting for dark energy, a mysterious force driving an acceleration in the universe’s expansion.

Now, researchers have announced a new way to look at the problem by examining galaxies so massive, they warp spacetime around them and bend faraway light like giant lenses.

The results, published in the journal Science on Thursday, upend no apple carts on their own. Within the margins for error, the latest measurement is consistent with previous attempts to find this crucial cosmic value. But as a proof-of-concept, the paper demonstrates that this promising new method works, which is exciting because it makes fewer assumptions about our universe’s structure than other Hubble-hunting methods.

“We can provide a unique perspective, in terms of measuring the Hubble constant,” says lead study author Inh Jee, who completed the work while a postdoctoral researcher at the Max Planck Institute for Astrophysics.

Attack of the clones.

Until recently, astronomers had only two main methods at their disposal for calculating the Hubble constant.

To infer its value from the early universe, scientists use data from the Planck satellite, which measured the cosmic microwave background, the afterglow emitted just 380,000 years or so after the big bang. Under certain assumptions about the fundamental nature of the universe, Planck data suggest that the Hubble constant should have a value of 67.4 kilometers a second per megaparsec, give or take 0.5. (A parsec equals a distance of about 3.26 light-years, and a megaparsec is a million parsecs.)

But researchers can also estimate the Hubble constant from far more modern stars and galaxies, and these methods don’t rely on those assumptions. Certain kinds of stars and stellar explosions have standard brightnesses; by comparing their expected brightnesses to their observed ones, researchers can work out how far away the objects must be. Astronomers then relate their distances to how quickly the universe’s expansion is driving us and them apart, which they can see from shifts in the objects’ light. This approach—refined by a research group called SH0ES—yields a Hubble constant value of 73.5, give or take 1.7.

“The analogy I like is, if you look at a two-year-old and you measured their height, you would predict their final height as an adult ... then you actually measure the height of the adult, and you go, Oh my gosh, it’s not consistent at all, they’re a foot taller we thought they would be!” says SH0ES leader Adam Riess, an astronomer at Johns Hopkins University.

To check whether this discrepancy is real, astronomers have sought other independent methods for getting at the Hubble constant. Enter COSMOGRAIL. The Swiss-based effort looks for and monitors gravitational lenses, regions of space that contain so much mass, they warp spacetime itself enough to bend any light that passes through.

Sometimes, a gravitational lens happens to fall directly between us and a faraway object, bending its light so much that we see several images of the object “cloned” around the lens’s edge. These images are not synchronized in time. One image’s light may have been bent less, giving it a straighter, quicker shot through the lens. Another image’s light may have been delayed by passing through especially warped spacetime.

COSMOGRAIL monitors gravitational lenses that happen to be backlit by quasars, extremely bright objects powered by supermassive black holes. Crucially, the lensed images of the quasar will flicker just like the quasar—but not all at the same time. These tiny delays depend on the distribution of mass within the lens and the distances between us, the quasar, and the lens. So if researchers figure out the mass needed to get the observed lensing, they can combine it with the time delays to estimate the Hubble constant.

If You Like What We Do And You Should Be Sure
To LIKE & Subscribe.

#cosmology #bigbang #Science

the universe might be acting weird,space,universe,galaxies,cosmology,big bang,dark energy,origins of the universe,science and technology,science,astrophysics,hubble constant,physics,

Post a Comment

0 Comments